## Same Volume, Different Shape

#### What You Need

• Recording Sheet



## What You Do

- 1. Take turns. Look at the *Prism 1* column on the **Recording Sheet.**
- **2.** Choose a prism and tell its volume. Explain why you think this volume is correct.
- **3.** If your partner agrees, write the volume in the *Volume* column on the **Recording Sheet.**
- **4.** In the *Prism 2* column, sketch another prism (in pencil) with different dimensions that has the same volume. Tell its volume and why you think the volume is correct.
- **5.** Your partner checks your work. Make changes if needed.
- **6.** Continue until the **Recording Sheet** is complete.

I built a rectangular prism that has 3 rows of 6 unit cubes, and 2 layers:

 $(3 \times 6) \times 2 = 36$ 

To build a different prism with the same volume, I can:

- Change the order of the factors:  $(2 \times 3) \times 6 = 36$
- Use other factors of 36:
  1, 2, 3, 4, 6, 9, 16, 18, 36
  (2 × 2) × 9 = 36

0

# Go Further!

Show all the ways you can think of to represent a rectangular prism with a volume of 21 cubic feet. Exchange papers with your partner to check each other's answers.



Partner B \_\_\_\_\_

# Same Volume, Different Shape





## **Find the Prism**

#### What You Need

- unit cubes
- 6 game markers in one color
- 6 game markers in a different color
- Game Board

#### Check Understanding A rectangular prism is measured in inches. The expression $(4 \times 4) \times$ 5 represents its volume. Use unit cubes to build the prism. Tell its volume and explain how you got your answer.

## What You Do

- 1. Takes turns. Choose a letter.
- **2.** Read the expression next to that letter in the table. Evaluate the expression.
- **3.** Find a prism on the **Game Board** with the same volume as your answer to number 2.
- **4.** Your partner builds the prism with unit cubes to check your work.
- **5.** If you are correct, cover that prism with your game marker. If you are incorrect, your partner covers that prism with his or her game marker.
- **6.** Each partner takes four turns. The player with the greater number of game markers wins.

| A | 20 × 4                  |
|---|-------------------------|
| В | 10 + 10 + 10            |
| с | $(3 \times 2) \times 8$ |
| D | 6 + 6 + 6               |
| E | (2 × 2) × 6             |
| F | 10 × 6                  |
| G | 12 + 12 + 12            |
| н | (13 × 2) × 2            |
| I | 8 × 3                   |

# Go Further!

Find the prism on the **Game Board** that is not covered with a game marker. Use unit cubes to build the prism. If each unit cube represents 1 cubic centimeter, what is the volume of the prism? Write two different expressions that show how to find that volume.



| Partner A |  |
|-----------|--|
|           |  |

Partner B \_\_\_\_\_

# Find the Prism



Think! Does the expression represent:

- · adding the number of cubes in each layer?
- multiplying the number of rows by cubes per row by number of layers?
- multiplying the number of cubes per layer by the number of layers?





# **Use Volume Vocabulary**

#### What You Need

• Recording Sheet

A crate is 8 feet long and 4 feet wide. Its height is 5 feet. Find its volume. Use volume vocabulary to tell your method.

## What You Do

- 1. Read the problem on the **Recording Sheet.** Think about how to solve it.
- **2.** Read the paragraphs that tell how to solve the problem.
- **3.** Use words and numbers from the word bank and number bank to fill in the blanks. You may use some numbers more than once.
- **4.** Take turns. After you fill in a blank, your partner fills in the next one.
- **5.** When all the blanks are filled in, read the paragraphs aloud. Do they make sense?
- 6. Fix any mistakes if you need to.



# Go Further!

The area of the base of a rectangular prism and the volume of a rectangular prism are measured in different units. Write one or two sentences about why this is true. Use at least three of the words in the box below.

|                   | 2-dimensional | 3-        | dimensional | cubic units               |
|-------------------|---------------|-----------|-------------|---------------------------|
|                   | plane         | rectangle | solid       | square units              |
| Measurement and D | ata   Level 5 |           | 1           | ©Curric<br>Copying permit |

| Partner A |  |
|-----------|--|
|-----------|--|

Partner B \_\_\_\_\_

# Use Volume Vocabulary

|                               | 2 in.                                      |               |
|-------------------------------|--------------------------------------------|---------------|
| 1 cubic inch                  | 5 m.                                       | Word Ba       |
|                               |                                            | area          |
| The model is a                | made of 1-inch                             | base          |
|                               |                                            | dimensio      |
| lts                           | is a rectangle made                        | formula       |
|                               | _                                          | height        |
| of rows of ur                 | nit cubes, for a total of unit             | length        |
|                               |                                            | rectangular p |
| cubes. The model has          | layers. The of                             | unit cube     |
|                               |                                            | width         |
| the model is: area of the bas | se ×,                                      | volume        |
| or (X) ×                      | = cubic inches.                            | Number B      |
|                               |                                            | 2             |
| <b>-</b> 1 12 1               |                                            | 3             |
| The diagram shows the         | of the box as:                             | 5             |
| — 5 in                        | — 3 in                                     | 15            |
| — J III.,                     | = 5 m.,                                    | 30            |
| = 2 in.                       |                                            |               |
|                               |                                            |               |
| You can use the               | $\l \times w \times h$ to find the volume: |               |
| ××                            | = cubic inches. Both ways                  |               |
| give the same volume.         |                                            |               |



### **Volume of Composite Figures**

#### What You Need

- a colored pencil in one color
- a colored pencil in a different color
- Recording Sheet



## What You Do

- 1. Take turns. Partner A chooses a composite figure on the **Recording Sheet.**
- **2.** Partner A draws a dashed line on the composite figure to form two rectangular prisms.
- **3.** Both partners find the volume of the composite figure using the two prisms made.
- **4.** Compare your answers. If the answers are different, work together to find the correct volume.
- 5. Repeat for all the figures on the Recording Sheet.

# Go Further!

Choose a composite figure from the **Recording Sheet.** Find the volume by breaking the figure apart in a different way. Compare this volume to the volume shown on the **Recording Sheet.** 





# Center Activity 5.44 $\star\star$ Recording Sheet

| Partner A |  |
|-----------|--|
|           |  |

Partner B \_\_\_\_\_

# **Volume of Composite Figures**



I can find the volume of these composite figures by breaking them apart into rectangular prisms. There may be more than one way to break apart the composite figures.



