Center Activity 4.29 ★★

Use Fraction Vocabulary

What You Need
- Recording Sheet

Check Understanding
Use fraction vocabulary to describe one way to compare \(\frac{7}{10} \) and \(\frac{3}{5} \).

What You Do

1. Use words from the word bank to fill in the blanks on the **Recording Sheet**. You may use some words more than once. There may be words that you do not use.

2. Take turns. After you fill in a blank, your partner fills in the next one.

3. When all the blanks are filled in, read the paragraphs aloud. Do they make sense?

4. Fix any mistakes that you find.

Go Further!

Write two sentences about comparing numbers using two of the words in the word bank on the **Recording Sheet**.
What are three different ways to compare \(\frac{6}{10} \) and \(\frac{2}{100} \)?

1. Find a fraction \(\underline{\text{to}} \) \(\frac{6}{10} \) with a
 \(\underline{\text{of}} \) \(100 \):
 \(\frac{6}{10} \times \frac{10}{10} = \frac{60}{100} \). The fraction \(\frac{60}{100} \) is
 \(\underline{\text{of}} \) \(2 \).
 So, \(\frac{6}{10} \) is \(\underline{\text{of}} \) \(2 \).

2. Find a fraction \(\underline{\text{to}} \) \(\frac{2}{100} \) with a
 \(\underline{\text{of}} \) \(6 \):
 \(\frac{2}{100} \times \frac{3}{3} = \frac{6}{300} \). The denominator
 in \(\frac{6}{10} \) is \(\underline{\text{the}} \) denominator in \(\frac{6}{300} \) which
 means that \(\frac{6}{10} \) has larger parts. The fraction \(\frac{6}{10} \) is
 \(\underline{\text{of}} \) \(2 \).
 So, \(\frac{6}{10} \) is \(\underline{\text{of}} \) \(2 \).

3. Compare \(\frac{6}{10} \) and \(\frac{2}{100} \) to the \(\underline{\text{fraction}} \) \(\frac{1}{2} \).
 The fraction \(\frac{6}{10} \) is \(\underline{\text{of}} \) \(\frac{1}{2} \), and \(\frac{2}{100} \) is
 \(\underline{\text{of}} \) \(\frac{1}{2} \). So, \(\frac{6}{10} \) is \(\underline{\text{of}} \) \(\frac{2}{100} \).
Center Activity 4.30 ★★

Comparing Fractions

What You Need
• Recording Sheet

What You Do
1. Take turns. Choose a pair of fractions on the Recording Sheet.
2. Write equivalent fractions with a common numerator or common denominator to compare the fractions. Write <, =, or > in the circle.
3. Your partner checks your answer using benchmark fractions.
4. Continue until all the problems on the Recording Sheet have been completed.

Check Understanding
Compare. Write <, =, or >.
\[
\frac{6}{8} \bigcirc \frac{3}{12}
\]

Go Further!
Choose one of the problems on the Recording Sheet. Draw a model to justify your answer. Exchange papers with your partner to check.

I can multiply the numerator and the denominator by the same number to make an equivalent fraction.
Center Activity 4.30 ★★ Recording Sheet

Comparing Fractions

<table>
<thead>
<tr>
<th>Partner A</th>
<th>Partner B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$ ☐ $\frac{4}{5}$</td>
<td>$\frac{8}{10}$ ☐ $\frac{2}{3}$</td>
</tr>
<tr>
<td>$\frac{4}{6}$ ☐ $\frac{2}{8}$</td>
<td>$\frac{10}{12}$ ☐ $\frac{5}{6}$</td>
</tr>
<tr>
<td>$\frac{4}{10}$ ☐ $\frac{8}{12}$</td>
<td>$\frac{2}{3}$ ☐ $\frac{3}{4}$</td>
</tr>
<tr>
<td>$\frac{3}{6}$ ☐ $\frac{1}{3}$</td>
<td>$\frac{6}{8}$ ☐ $\frac{10}{12}$</td>
</tr>
<tr>
<td>$\frac{2}{5}$ ☐ $\frac{6}{15}$</td>
<td>$\frac{5}{6}$ ☐ $\frac{3}{4}$</td>
</tr>
</tbody>
</table>
Center Activity 4.61 ★★

Make a Whole!

What You Need

- Fraction Cards
- Recording Sheet

What You Do

1. Shuffle the Fraction Cards and place them facedown in a pile.

2. The first partner picks a Fraction Card and finds a way to put the fraction together. The second partner finds another way to put the fraction together using a different combination of fractions. Take turns to find different ways to put the fraction together.

3. Continue until one partner cannot find a new way to put the fraction together on his or her turn. The other partner shades one part of his or her whole circle on the Recording Sheet.

4. The first player to shade his or her whole circle on the Recording Sheet wins.

5. Shuffle the cards and play again.

Check Understanding

Tell three different ways to put together eighths to make \(\frac{5}{8} \).

\[
\frac{3}{8} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}
\]

How many ways can I put together fifths to make \(\frac{3}{5} \)?

\[
\frac{3}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5}
\]

\[
\frac{3}{5} = \frac{2}{5} + \frac{1}{5}
\]

Go Further!

Place the Fraction Cards facedown in a pile. Pick a card but do not show it to your partner. Say a way to put together the fraction on the card. Your partner tells the fraction on your card.
<table>
<thead>
<tr>
<th>2/4</th>
<th>3/4</th>
<th>4/4</th>
<th>2/6</th>
<th>3/6</th>
<th>4/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/6</td>
<td>6/6</td>
<td>2/8</td>
<td>3/8</td>
<td>4/8</td>
<td>5/8</td>
</tr>
<tr>
<td>6/8</td>
<td>7/8</td>
<td>8/8</td>
<td>2/10</td>
<td>3/10</td>
<td>4/10</td>
</tr>
<tr>
<td>5/10</td>
<td>6/10</td>
<td>7/10</td>
<td>8/10</td>
<td>9/10</td>
<td>10/10</td>
</tr>
</tbody>
</table>
Center Activity 4.61 ★★ Recording Sheet

Partner A

Partner B

Partner A

Partner B
Different Ways to Show Sums

What You Need

- number cube
- 15 game markers in one color
- 15 game markers in a different color
- Game Board

What You Do

1. Take turns. Roll the number cube. Find the fraction sum next to that toss in the table.

2. Find one expression on the Game Board that has that sum. Your partner checks your expression.

3. If you are correct, place your game marker on that expression. If you are not correct or if there are no uncovered expressions with that sum, your turn ends.

4. Continue until all the expressions on the Game Board have been covered.

5. The player with the greater number of game markers on the Game Board wins.

<table>
<thead>
<tr>
<th>Toss</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/8</td>
</tr>
<tr>
<td>2</td>
<td>5/6</td>
</tr>
<tr>
<td>3</td>
<td>3/8</td>
</tr>
<tr>
<td>4</td>
<td>4/6</td>
</tr>
<tr>
<td>5</td>
<td>8/6</td>
</tr>
<tr>
<td>6</td>
<td>7/8</td>
</tr>
</tbody>
</table>

Go Further!

Write two addition expressions using sixths that equal \(\frac{8}{6} \) and are NOT on the Game Board. Exchange papers with your partner to check.

Check Understanding

Use twelfths to write three different addition expressions that equal \(\frac{5}{12} \).
Different Ways to Show Sums

<table>
<thead>
<tr>
<th>Addends</th>
<th>Addends</th>
<th>Addends</th>
<th>Addends</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6})</td>
<td>(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6})</td>
<td>(\frac{2}{8} + \frac{3}{8} + \frac{4}{8})</td>
<td>(\frac{2}{6} + \frac{1}{6} + \frac{1}{6})</td>
</tr>
<tr>
<td>(\frac{4}{6} + \frac{2}{6} + \frac{1}{6} + \frac{1}{6})</td>
<td>(\frac{4}{6} + \frac{3}{8})</td>
<td>(\frac{2}{6} + \frac{3}{8})</td>
<td>(\frac{4}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8})</td>
</tr>
<tr>
<td>(\frac{2}{8} + \frac{2}{8} + \frac{3}{8})</td>
<td>(\frac{3}{6} + \frac{1}{6} + \frac{1}{6})</td>
<td>(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{3}{8})</td>
<td>(\frac{3}{6} + \frac{5}{6})</td>
</tr>
<tr>
<td>(\frac{3}{8} + \frac{3}{8} + \frac{3}{8})</td>
<td>(\frac{2}{6} + \frac{2}{6} + \frac{1}{6})</td>
<td>(\frac{1}{8} + \frac{2}{8})</td>
<td>(\frac{2}{6} + \frac{2}{6})</td>
</tr>
<tr>
<td>(\frac{1}{6} + \frac{2}{6} + \frac{1}{6} + \frac{1}{6})</td>
<td>(\frac{4}{8} + \frac{3}{8} + \frac{1}{8} + \frac{1}{8})</td>
<td>(\frac{2}{6} + \frac{2}{6} + \frac{4}{6})</td>
<td>(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6})</td>
</tr>
</tbody>
</table>

I can combine or break apart addends to find different expressions for a sum.

©Curriculum Associates, LLC
Copying permitted for classroom use.