Write the Fraction

What You Need

- crayon
- Recording Sheet

Divide a square into 6 equal parts and shade 2 parts. Name the fraction for the shaded part and the non-shaded part. Explain.

What You Do

- Take turns. Choose a shape on the Recording Sheet and shade a part or some parts of it.
- **2.** Your partner writes the fraction for the shaded part(s).
- **3.** Check your partner's fraction.
- **4.** Repeat until all the squares are complete.

I need to count how many parts are shaded and how many parts there are in all.

Draw 5 different shapes. Shade $\frac{1}{4}$ of each shape. Label the shaded part and unshaded part of each shape. Have your partner check your models.

Center Activit	y 3.25 ★★	Recording	Shee
-----------------------	-----------	-----------	------

Partner B _____

Write the Fraction

Center Activity 3.26 ★★

Show Fractions

What You Need

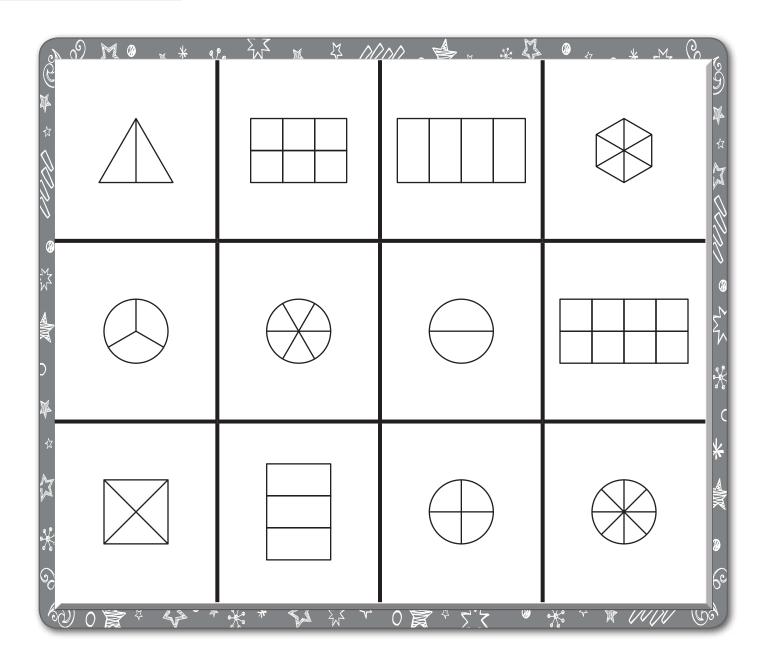
- number cube (1–6)
- 10 game markers in one color
- 10 game markers in a different color
- Game Board

Divide a rectangle into 6 equal parts and shade 4 parts.
Name the fraction for the shaded part.
Explain.

What You Do

- **1.** Take turns. Roll the number cube. Read the fraction next to it.
- **2.** Find one shape on the **Game Board** that is divided to match the denominator. If there is no match, you turn ends.
- **3.** Shade the part(s) to match the fraction.
- **4.** Your partner checks your work. If correct, put your game marker on the shape.
- **5.** Repeat until all the shapes are covered. The player with the most game markers on the **Game Board** wins.

Toss	Fractions
1	<u>6</u> 8
2	1/2
3	2/3
4	<u>5</u>
5	$\frac{3}{4}$
6	Your turn ends.


Write a fraction for the unshaded parts of all shapes on the **Game Board.** Trade papers with you partner to check.

Partner A	

Partner B _____

Show Fractions

I can count unit fractions in order like whole numbers $\frac{1}{3}$, $\frac{2}{3}$, $\frac{3}{3}$.

Building Equivalent Fractions

What You Need

- fraction strips
- Recording Sheet

Check Understanding

Use fraction strips to show an equivalent fraction for $\frac{2}{1}$. Explain how you know they are equivalent.

What You Do

- **1.** Take turns. Pick a fraction on the **Recording**Sheet.
- 2. Use the fraction strips to build that fraction. Then divide the first shape and shade part(s) to show that fraction on the **Recording** Sheet.
- **3.** Your partner builds an equivalent fraction with the fraction strips and writes it on the **Recording Sheet.** Then he or she divides and shades the second shape show the equivalent fraction.
- **4.** Repeat until all the fractions have been used.

Example

$$\frac{1}{2} = \frac{2}{4}$$

1		
2		

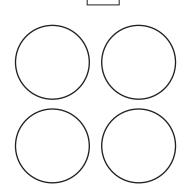
1/4	
1/4	

I need to remember that equivalent fractions take up the same amount of space.

Write five fractions that are equal to 1. Trade papers with your partner to check.

Building Equivalent Fractions

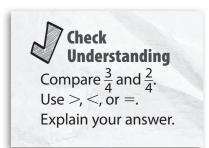
- ■		
-		
	1	
_	<u> </u>	_
-	2	8


1 _	_ [
4	_ [

$$\frac{1}{3} = \boxed{\phantom{\frac{1}{3}}}$$

$$\frac{3}{4} = \frac{\boxed{}}{\boxed{}}$$

8 _	
4	


3	=	
J		

)(\int

Comparing Fractions

What You Need

• Recording Sheet

What You Do

- Take turns. Choose a box on the Recording Sheet.
- **2.** Look at the fractions. Shade the shapes to show each fraction.
- **3.** Compare the fractions. Fill in the correct symbol: >, <, or =.
- 4. Your partner checks your work.
- **5.** Repeat until all the fractions have been compared.

If the numerators are the same and the denominators are different, what do I need to think about?

Draw two identical shapes and divide them into a different number of equal parts. Shade parts of each shape. Compare the shaded parts. Write the fraction for each figure. Compare the fractions using >, <, or =. Trade papers with your partner to check.

Partner B _____

Comparing Fractions

$\frac{1}{2}\bigcirc\frac{1}{4}$ $\frac{4}{6}\bigcirc\frac{3}{6}$	$\frac{2}{3}\bigcirc\frac{2}{8}$ $\frac{2}{3}\bigcirc\frac{2}{8}$ $\frac{2}{4}\bigcirc\frac{2}{3}$
46036	$\frac{2}{4}\bigcirc\frac{2}{3}$
46036	$\frac{2}{4}\bigcirc\frac{2}{3}$
$\frac{4}{6}\bigcirc\frac{3}{6}$	$\frac{2}{4}\bigcirc\frac{2}{3}$
$\frac{4}{6}\bigcirc\frac{3}{6}$	$\frac{2}{4}\bigcirc\frac{2}{3}$
$\frac{4}{6}$ $\bigcirc \frac{3}{6}$	$\frac{2}{4}$ $\bigcirc \frac{2}{3}$
$\frac{3}{6}$ $\bigcirc \frac{3}{8}$	$\frac{2}{4}\bigcirc\frac{4}{8}$
($\frac{3}{6}\bigcirc \frac{3}{8}$