The At-Home Activity Packet includes 16 sets of practice problems that align to important math concepts that have likely been taught this year.

Since pace varies from classroom to classroom, feel free to select the pages that align with the topics your students have covered.

The At-Home Activity Packet includes instructions to the parent and can be printed and sent home.

This At-Home Activity Packet—Teacher Guide includes all the same practice sets as the Student version with the answers provided for your reference.
Grade 1 Math concepts covered in this packet

<table>
<thead>
<tr>
<th>Concept</th>
<th>Practice</th>
<th>Fluency and Skills Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Strategies to Add</td>
<td>1</td>
<td>Counting On to Add</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Using Doubles and Near Doubles</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Adding in Any Order with Near Doubles</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Making a Ten to Add</td>
</tr>
<tr>
<td>Using Strategies to Subtract</td>
<td>5</td>
<td>Understanding of Missing Addends</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Counting On to Subtract</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Making a Ten to Subtract</td>
</tr>
<tr>
<td>Understanding Addition and Subtraction</td>
<td>8</td>
<td>Number Partners for 10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Adding and Subtracting in Word Problems</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Subtracting to Compare in Word Problems</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Understanding of True and False Equations</td>
</tr>
<tr>
<td>Understanding Place Value</td>
<td>12</td>
<td>Understanding of Teen Numbers</td>
</tr>
<tr>
<td>Adding and Subtracting within 20</td>
<td>13</td>
<td>Finding Totals Greater Than 10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Adding Three Numbers</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Finding the Unknown Number</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Solving Word Problems to 20</td>
</tr>
</tbody>
</table>
Count on to add.

Example

```
5  +  2  =  7
```

1

```
7  +  1  =  8
```

2

```
8  +  2  =  10
```
Counting On to Add continued

Discuss It

Did you always start at 1 when you counted? Explain.

Sample answer: No. I started with the first number of blocks and then counted on from that number.
Use what you know about doubles to solve.

Example
1 black sticker. 1 white sticker.
How many stickers in all?

1 + 1 = 2
2 stickers

1 1 black sticker. 2 white stickers.
How many stickers in all?

1 + 2 = 3
3 stickers

2 3 white stickers. 3 black stickers.
How many stickers in all?

3 + 3 = 6
6 stickers
4 black stickers. 4 white stickers.

How many stickers in all?

4 + 4 = __8__

___8___ stickers

4 black squares.
5 white squares.

How many squares in all?

4 + 5 = __9__

___9___ squares

Discuss It

How is 3 + 3 like 3 + 4? How is it different?

Answers will vary. Possible answer: 3 + 3 is a doubles fact and 3 + 4 is 1 more.
Use the blocks. Complete the addition equations.

Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 + ____ = 6

2 + ____ = 6

1. | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 + ____ = 6

1 + ____ = 6

2. | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 + ____ = 6

0 + ____ = 6

3. | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 + ____ = 7

2 + ____ = 7

4. | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 + ____ = 7

4 + ____ = 7
Adding in Any Order with Near Doubles continued

5

1 + 7 = 8

7 + 1 = 8

6

6 + 2 = 8

2 + 6 = 8

7

5 + 4 = 9

4 + 5 = 9

8

3 + 6 = 9

6 + 3 = 9
Making a Ten to Add

Fill in the number bonds to make a ten.

1 Find 9 + 3.

\[
\begin{array}{c}
9 \\
+ \\
3 \\
\hline \\
1 \\
2 \\
\end{array}
\]

\[10 + 2 = 12\]
\[9 + 3 = 12\]

2 Find 9 + 5.

\[
\begin{array}{c}
9 \\
+ \\
5 \\
\hline \\
1 \\
4 \\
\end{array}
\]

\[10 + 4 = 14\]
\[9 + 5 = 14\]

3 Find 8 + 4.

\[
\begin{array}{c}
8 \\
+ \\
4 \\
\hline \\
2 \\
2 \\
\end{array}
\]

\[10 + 2 = 12\]
\[8 + 4 = 12\]

4 Find 8 + 6.

\[
\begin{array}{c}
8 \\
+ \\
6 \\
\hline \\
2 \\
4 \\
\end{array}
\]

\[10 + 4 = 14\]
\[8 + 6 = 14\]
Discuss It

How does making a ten help you add two numbers?

Answers will vary. Possible answer: Adding two numbers is easier when one of the numbers is ten.
Use addition to help you subtract.

1. Find $6 - 5$.

 $5 + \underline{1} = 6$

 $6 - 5 = \underline{1}$

2. Find $7 - 6$.

 $6 + \underline{1} = 7$

 $7 - 6 = \underline{1}$

3. Find $5 - 2$.

 $2 + \underline{3} = 5$

 $5 - 2 = \underline{3}$

4. Find $6 - 4$.

 $4 + \underline{2} = 6$

 $6 - 4 = \underline{2}$

5. Find $8 - 4$.

 $4 + \underline{4} = 8$

 $8 - 4 = \underline{4}$

 $7 + \underline{2} = 9$

 $9 - 7 = \underline{2}$

7. Write an addition equation that helps you find $6 - 3$. Then complete the subtraction equation.

 $\underline{3} + \underline{3} = \underline{6}$

 $6 - 3 = \underline{3}$

Discuss It

How can an addition equation help you solve a subtraction equation?
Answers will vary. Possible answer: I can write a missing addend equation, and then count on to find the missing addend.
Example
Find 5 – 3.
Start at 3. Count on to 5.

\[
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[3 + _2_ = 5 \quad 5 - 3 = _2_
\]

1. Find 6 – 4.

\[
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[4 + _2_ = 6 \quad 6 - 4 = _2_
\]

2. Find 7 – 3.

\[
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[3 + _4_ = 7 \quad 7 - 3 = _4_
\]

3. Find 8 – 6.

\[
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[6 + _2_ = 8 \quad 8 - 6 = _2_
\]
4 Find 9 \(-\) 8.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
8 & + & \underline{1} & = & 9 & & & & & \\
9 & - & 8 & = & \underline{1} & & & & & \\
\end{array}
\]

5 Find 6 \(-\) 5.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
5 & + & \underline{1} & = & 6 & & & & & \\
6 & - & 5 & = & \underline{1} & & & & & \\
\end{array}
\]

6 Find 9 \(-\) 4.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
4 & + & \underline{5} & = & 9 & & & & & \\
9 & - & 4 & = & \underline{5} & & & & & \\
\end{array}
\]

7 Find 8 \(-\) 2.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
2 & + & \underline{6} & = & 8 & & & & & \\
8 & - & 2 & = & \underline{6} & & & & & \\
\end{array}
\]

Discuss It

How is solving 6 \(-\) 4 the same as solving 9 \(-\) 4?

How is it different?

I start at the number 4 for both problems. For Problem 6 \(-\) 4, I count on to 6. For 9 \(-\) 4, I count on to 9.
Making a Ten to Subtract

1. Find 15 – 7.
 \[15 - \boxed{5} = 10\]
 \[10 - 2 = \boxed{8}\]
 \[15 - 7 = \boxed{8}\]

2. Find 13 – 6.
 \[13 - \boxed{3} = 10\]
 \[10 - 3 = \boxed{7}\]
 \[13 - 6 = \boxed{7}\]

 \[15 - \boxed{5} = 10\]
 \[10 - 4 = \boxed{6}\]
 \[15 - 9 = \boxed{6}\]
 $12 - \underline{2} = 10$
 $10 - 5 = \underline{5}$
 $12 - 7 = \underline{5}$

5. Find $11 - 7$.
 $11 - \underline{1} = 10$
 $10 - 6 = \underline{4}$
 $11 - 7 = \underline{4}$

 $16 - \underline{6} = 10$
 $10 - 3 = \underline{7}$
 $16 - 9 = \underline{7}$
Draw counters to make 10. Then complete the equation.

10 = 9 + 1

10 = 1 + 9

10 = 8 + 2

10 = 2 + 8
Number Partners for 10 continued

10 = 6 + ___

10 = 4 + ___

10 = 5 + ___
Solve each problem.

1 Marai sees 8 dogs at the park.
 Some dogs go home.
 Now Marai sees 5 dogs.
 How many dogs go home?

 \[
 5 + _3_ = 8 \quad 8 - _3_ = 5
 \]
 _

 dogs go home.

2 Ben has 7 hats. 1 hat is red.
 The rest are blue.
 How many hats are blue?

 \[
 7 = 1 + _6_ \quad 7 - _6_ = 1
 \]
 _

 hats are blue.
3. Asia has 7 books. She buys more books. Now Asia has 9 books. How many books does she buy?

\[7 + _2_ = 9 \quad 9 - _2_ = 7 \]

Asia buys _2_ books.

4. Jake has 8 games. He gives some away. Now he has 3 games. How many games does Jake give away?

\[3 + _5_ = 8 \quad 8 - _5_ = 3 \]

Jake gives _5_ games away.
Solve the subtraction problems.

1. There are 6 triangles. There are 4 circles. How many more triangles are there?
 \[6 - 4 = \ ?\]
 \[\ ?\] more triangles

2. There are 5 squares. There are 2 circles. How many more squares are there?
 \[5 - 2 = \ ?\]
 \[\ ?\] more squares

3. There are 7 triangles. There are 6 squares. How many more triangles are there?
 \[7 - 6 = \ ?\]
 \[\ ?\] more triangle
4. There are 8 triangles and 5 circles.
 How many fewer circles than triangles are there?

 \[8 - 5 = 3 \]

 3 fewer triangles

5. There are 2 squares and 7 triangles.
 How many fewer squares than triangles are there?

 \[7 - 2 = 5 \]

 5 fewer squares
Choose a number from the box to complete the equation.

Example

\[
\begin{array}{ccc}
0 & 1 & 2 \\
\end{array}
\]

\[
2 + 0 = 1 + 1
\]

1. \[
\begin{array}{ccc}
0 & 1 & 2 \\
\end{array}
\]

\[
2 + 1 = 1 + \underline{2}
\]

2. \[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]

\[
3 + 2 = 2 + 3
\]

3. \[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]

\[
3 + 2 = 4 + \underline{1}
\]

4. \[
\begin{array}{ccc}
0 & 1 & 2 \\
\end{array}
\]

\[
6 + 0 = 5 + \underline{1}
\]

5. \[
\begin{array}{ccc}
4 & 5 & 6 \\
\end{array}
\]

\[
3 + 3 = 6 + 0
\]

6. \[
\begin{array}{ccc}
2 & 3 & 4 \\
\end{array}
\]

\[
4 + 3 = 5 + \underline{2}
\]

7. \[
\begin{array}{ccc}
0 & 1 & 2 \\
\end{array}
\]

\[
6 + 1 = 7 + \underline{0}
\]

8. \[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]

\[
4 + 4 = 5 + \underline{3}
\]

9. \[
\begin{array}{ccc}
0 & 1 & 2 \\
\end{array}
\]

\[
1 + 8 = 7 + \underline{2}
\]
Draw lines to match the numbers.

- 11
- 17
- 15
- 18
- 13
Draw lines to match the numbers.

- 1 ten and 4 ones
- 1 ten and 9 ones
- 1 ten and 2 ones
- 1 ten and 6 ones
- 1 ten and 1 one

Discuss It

What is the same about each teen number? What is different?

Every teen number has one ten. The number of ones for each teen number is different.
Finding Totals Greater Than 10

Add.

<table>
<thead>
<tr>
<th></th>
<th>9 + 3 = 12</th>
<th></th>
<th>3 + 9 = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8 + 6 = 14</td>
<td></td>
<td>6 + 8 = 14</td>
</tr>
<tr>
<td>3</td>
<td>4 + 9 = 13</td>
<td></td>
<td>5 + 7 = 12</td>
</tr>
<tr>
<td>4</td>
<td>6 + 7 = 13</td>
<td></td>
<td>7 + 8 = 15</td>
</tr>
<tr>
<td>5</td>
<td>10 + 9 = 19</td>
<td></td>
<td>9 + 8 = 17</td>
</tr>
<tr>
<td>6</td>
<td>5 + 3 + 4 = 13</td>
<td></td>
<td>5 + 9 + 1 = 15</td>
</tr>
</tbody>
</table>

Discuss It

Explain how you solved Problem 11.

Answers will vary. Possible answer: I used the Commutative Property to rewrite the problem as 6 + 4 + 3. Then I added 6 + 4 to make 10 then added on the 3 to get 13.
Adding Three Numbers

1. Find $7 + 3 + 4$.

 $7 + box{3} + box{4} = \underline{14}$

2. Find $3 + 2 + 7$.

 $\fbox{3} + \fbox{2} + \fbox{7} = \underline{12}$

3. Find $6 + 5 + 1$.

 $6 + \fbox{5} + \fbox{1} = \underline{12}$

4. Find $4 + 4 + 2$.

 $\fbox{4} + \fbox{4} + \fbox{2} = \underline{10}$

5. Find $8 + 5 + 2$.

 $8 + \fbox{5} + \fbox{2} = \underline{15}$

6. Find $3 + 5 + 3$.

 $3 + \fbox{5} + \fbox{3} = \underline{11}$
7. Find $4 + 6 + 5$.

$$4 + 6 + 5 = 15$$

8. Find $5 + 7 + 5$.

$$5 + 7 + 5 = 17$$

9. Find $5 + 3 + 2$.

$$5 + 3 + 2 = 10$$

$$4 + 6 + 4 = 14$$

Both are correct. Answers will vary. Possible answer: With the same 3 addends, you can add any two addends first and you will get the same total.
1 Find the missing number.
 \[17 - ___ = 9\]

2 Find the missing number.
 \[___ - 8 = 5\]

3 Find the missing number.
 \[15 - ___ = 6\]
Finding the Unknown Number continued

4. Find the missing number.
 \[7 = \underline{14} - 7 \]

5. Find the missing number.
 \[8 = 12 - \underline{4} \]

6. Find the missing number.
 \[\underline{18} - 9 = 9 \]

7. Find the missing number.
 \[16 - \underline{9} = 7 \]

8. Find the missing number.
 \[15 - \underline{7} = 8 \]

9. Find the missing number.
 \[5 = \underline{14} - 9 \]

10. Find the missing number.
 \[\underline{17} - 7 = 10 \]

Discuss It

11. How did you use the 10-frames to find the missing number in Problem 4?

 Answers will vary. Possible answer: First, I drew 7 circles because that is the answer. Then, I drew 7 more circles because that is how many I am subtracting. Finally, I counted the number of circles in the 10-frames. There are 14 circles, so the answer is 14.
1. Amy has some crayons. She finds 7 more crayons. Now she has 18 crayons. How many crayons did she have at the start?

- Amy's crayons: 11
- Found: 7
- Total: 18

 11 + 7 = 18

 11 crayons

2. There are 15 fish in a tank. 7 of the fish are orange. The rest are white. How many are white?

 - Total fish: 15
 - Orange: 7
 - White: 8

 15 − 7 = 8

 8 white fish

3. Marco has 16 flowers. He gives some to Alex. Now Marco has 8 flowers. How many did he give to Alex?

 - Marco's flowers: 16
 - Left: 8
 - Given to Alex: 8

 16 − 8 = 8

 8 flowers

4. There are 12 bagels in a box. Some bagels are eaten. Now there are 4 bagels. How many bagels were eaten?

 - Total bagels: 12
 - Left: 4
 - Eaten: 8

 12 − 8 = 4

 4 bagels
5 Mica eats 4 fewer pretzels than Wyatt. Wyatt eats 14 pretzels. How many pretzels did Mica eat? \[14 - 4 = 10\] 10 pretzels

6 Pete reads for 9 minutes. The next day he reads for 6 minutes. How many minutes did he read altogether? \[9 + 6 = 15\] 15 minutes