Grado 8 Matemáticas

Paquete de actividades para el hogar del estudiante

Este Paquete de actividades para el hogar incluye un conjunto de 18 problemas prácticos que están alineados con importantes conceptos de matemáticas en los que sus estudiantes ya han trabajado durante este año.

Se recomienda que el estudiante complete una página de problemas de práctica cada día.

Anime al estudiante a hacer su mejor esfuerzo al trabajar en este contenido. Lo más importante es que continúe desarrollando sus habilidades y fluidez en matemáticas.

iMire los conceptos de Matemáticas del Grado 8 que cubre este paquete!

Grado 8 Conceptos de matemáticas cubiertos en este paquete

Concept Concepto	Practice Práctica	Fluency and Skills Practice Fluidez y práctica de destrezas	Page Página
Understanding Integer Exponents Comprender los exponentes enteros	1	Applying Properties for Powers with the Same Base (Aplicar las propiedades para las potencias con la misma base)	3
	2	Applying Properties for Powers with the Same Exponent (Aplicar las propiedades para las potencias con el mismo exponente)	4
	3	Applying Properties of Negative Exponents (Aplicar las propiedades de los exponentes negativos)	5
	4	Applying Properties of Integer Exponents (Aplicar las propiedades de los exponentes enteros)	6
Understanding Scientific Notation Comprender la notación científica	5	Writing Numbers in Scientific Notation (Escribir números en notación científica)	7
	6	Adding and Subtracting with Scientific Notation (Sumary restar con notación científica)	8
	7	Multiplying and Dividing with Scientific Notation (Multiplicar y dividir con notación científica)	10
Understanding Functions Comprender las funciones	8	Interpreting a Linear Function (Interpretar una función lineal)	12
	9	Writing an Equation for a Linear Function from a Verbal Description (Escribir una ecuación para una función lineal a partir de una descripción verbal)	14
	10	Using Graphs to Describe Functions Qualitatively (Usar gráficas para describir funciones de manera cualitativa)	16
Understanding Linear Equations Comprender las ecuaciones lineales	11	Finding the Slope of a Line (Encontrar la pendiente de una recta)	18
	12	Graphing a Linear Equation Given in Any Form (Representar gráficamente una ecuación lineal dada de cualquier forma)	20
	13	Representing and Solving Problems with One-Variable Equations (Representary resolver problemas con ecuaciones de una variable)	22
Understanding Systems of Linear Equations Comprender los sistemas de ecuaciones lineales	14	Solving Systems of Linear Equations by Substitution (Resolver sistemas de ecuaciones lineales por sustitución)	24
	15	Solving Systems of Linear Equations by Elimination (Resolver sistemas de ecuaciones lineales por eliminación)	25
	16	Solving Real-World Problems with Systems of Linear Equations (Resolver problemas del mundo real con sistemas de ecuaciones lineales)	26
Understanding Transformation, Congruence, and Similarity Comprender transformaciones, congruenciay semejanza	17	Performing Sequences of Rigid Transformations (Hacer secuencias de transformaciones rígidas)	28
	18	Describing Sequences of Transformations Involving Dilations (Describir secuencias de transformaciones con dilataciones)	30

Applying Properties for Powers with the Same Base

Rewrite each expression as a single power.
(1) $6^{4} \cdot 6^{4}$
(2) $\left(-5^{5}\right)^{2}$
(3) $\frac{2^{9}}{2^{5}}$
(4) $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3^{2}$
(5) $\frac{12^{5} \cdot 12^{7}}{-12^{4}}$
(6) $\left(\frac{7^{5}}{7^{2}}\right)^{2}$

Evaluate each expression.

(7) $\frac{4^{8}}{4^{5}}$
$8(-10) \cdot(-10)^{4}$
(9) $\left(\frac{(-3)^{4}}{(-3)^{2}}\right)^{3}$

What value of \boldsymbol{x} makes the equation true?

(10) $\frac{8^{x}}{8^{5}}=8^{7}$
11 $(-11)^{x} \cdot(-11)^{4}=\frac{(-11)^{10}}{(-11)^{3}}$
(12) $\left(6^{x}\right)^{10}=\frac{\left(6^{12}\right)^{2}}{6^{4}}$
(13) Explain how you solved for x in problem 12.

Applying Properties for Powers with the Same Exponent

Rewrite each expression as a single power.
(1) $9^{4} \cdot 10^{4}$
(2) $(12 \cdot 6)^{3}$
(3) $\frac{3^{3}}{2^{3}}$
(4) $\frac{6^{2}}{2^{2}}$
(5) $(-5)^{6} \cdot(-7)^{6}$
(6) $\left(\frac{6^{4}}{12^{4}}\right)^{2}$

Rewrite each expression as a product of two powers or quotient of two powers.
(7) $5^{5}\left(16^{2} \cdot 5^{3}\right)^{3}$
(8) $\left(\frac{8^{4} \cdot 5^{3}}{8^{5}}\right)^{2}$
(9) $\left(\frac{5^{8} \cdot 3^{7}}{5^{4}}\right)^{10}$

10 How does multiplying powers with the same base differ from multiplying powers with the same exponent but different bases?

Applying Properties of Negative Exponents

Rewrite each expression using only positive exponents. The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.
(1) $7^{3} \cdot 16^{-9}$
(2) $\frac{8^{-6}}{21^{-4}}$
(3) $\left(\frac{7}{16}\right)^{-3}$
(4) $16^{3} \cdot(-7)^{-3}$
(7) $\frac{11^{-7} \cdot 5^{9}}{6^{9}}$
\qquad
(10) $\frac{3^{5} \cdot(-4)^{-10}}{7^{9} \cdot 21^{-4}}$
(11) $\frac{(-21)^{-4} \cdot(-4)^{0}}{3^{-5} \cdot 7^{-9}}$
$12\left(\frac{3}{7}\right)^{-5} \cdot(-21)^{-4} \cdot(-4)^{2}$
(8) $\frac{11^{-7} \cdot 5^{9}}{6^{-9}}$
(9) $6^{9} \cdot 11^{-7} \cdot 5^{-9}$
$5(8 \cdot 21)^{-4}$
(6) $8 \cdot 21^{-3}$
\qquad

Answers

$\frac{1}{(8 \cdot 21)^{4}}$
$\frac{6^{9}}{11^{7} \cdot 5^{9}}$
\qquad
五

Applying Properties of Integer Exponents

$>$ Evaluate each expression.
(1) $18^{-4} \cdot 6^{7}$
(2) $3^{4} \cdot 3^{-6} \cdot 9^{0}$
(3) $\left(\frac{3^{-4} \cdot 3^{6}}{6^{3} \cdot 6^{-1}}\right)^{-2}$

Write each expression using only positive exponents.
(4) $19^{-3} \cdot 19 \cdot 19^{-4} \cdot 19^{3}$
(5) $\frac{6^{-3} \cdot 17^{3} \cdot 2}{6^{5} \cdot 17^{-4} \cdot 2^{-1}}$
(6) $24^{-3} \cdot 24^{7} \cdot\left(24^{-3}\right)^{4} \cdot 24^{9}$
(7) $\left(\frac{7^{-3} \cdot 3^{-8}}{7^{-2} \cdot 3^{-2}}\right)^{-4}$
($8\left(2^{-1} \cdot 3^{0}\right)^{-3} \cdot\left(2^{0} \cdot 5^{3}\right)^{5}$
(9) $\left(\frac{5^{6} \cdot 3^{-3}}{3^{-3}}\right)^{4}$

10 How could you have simplified problem 7 in a different way?

Writing Numbers in Scientific Notation

Write each number in scientific notation.
(1) 8
(2) 54
(3) 0.02
(4) 229
(5) 187
(6) 0.452
\qquad
(7) 0.006009
(8) 452
(9) 35,710
(10) 0.00005026
(11) 787,000
(13) $934 \frac{1}{2}$
(14) 0.000000452
(15) $11,235,000,000$

16 How are the answers to problems $6,8,12$, and 14 similar? How are they different?

Adding and Subtracting with Scientific Notation

> Find each sum or difference. Write your answer in scientific notation.
(1) $\left(6 \times 10^{1}\right)+\left(9 \times 10^{1}\right)$
(2) $32-\left(2.1 \times 10^{1}\right)$
(3) $\left(7 \times 10^{0}\right)+\left(3 \times 10^{1}\right)$
\qquad
(5) $\left(8.8 \times 10^{2}\right)+\left(3 \times 10^{2}\right)$

6 $\left(3.05 \times 10^{2}\right)+64$

Adding and Subtracting with Scientific Notation continued

(7) $\left(4 \times 10^{2}\right)+120.5$
(8) $\left(2.75 \times 10^{3}\right)-100$
(9) $\left(9.5 \times 10^{2}\right)-\left(4.3 \times 10^{1}\right)$
(10) $18-\left(2 \times 10^{-1}\right)$
(11) $0.071+\left(6 \times 10^{-2}\right)$
(12) $2,000+\left(8 \times 10^{3}\right)$
(13) When adding or subtracting with scientific notation, why is it important to have the same power of 10 ?

Multiplying and Dividing with Scientific Notation

> Find each product or quotient. Write your answer in scientific notation.
(1) $\left(3.6 \times 10^{1}\right) \div 6$
(2) $\left(2 \times 10^{2}\right) \times\left(3 \times 10^{1}\right)$
(3) $7 \times\left(2 \times 10^{1}\right)$
(4) $\left(2.5 \times 10^{0}\right) \times\left(1.5 \times 10^{1}\right)$
(5) $\left(4 \times 10^{2}\right) \div\left(4 \times 10^{1}\right)$
(6) $45 \div\left(5 \times 10^{0}\right)$

Multiplying and Dividing with Scientific Notation continued

(7) $\left(2.5 \times 10^{2}\right) \times 5$
(8) $900 \div\left(4.5 \times 10^{\circ}\right)$
(9) $\left(4 \times 10^{5}\right) \times 0.0375$
(10) $\left(6 \times 10^{-10}\right) \div\left(2.5 \times 10^{-12}\right)$

11 $\left(2.8 \times 10^{-7}\right) \times\left(7 \times 10^{12}\right)$
(12) $0.000068 \div\left(2 \times 10^{8}\right)$

13 How do you divide two numbers in scientific notation?

Interpreting a Linear Function

Interpret the linear function to solve the problems. Show your work.

(1) A group of volunteers is spending a week cleaning up the trails in the Hudson Highlands. On day 2 the volunteers begin at the point on the trail where they ended the day before. The graph shows their elevation, in feet, as a function of the number of hours they work to clean the trails.

a. What does the ordered pair $(1,1000)$ on the graph represent?
b. The graph begins at 720 on the y-axis. What does this value represent? Is this the rate of change or the initial value?
c. By how many feet does the elevation increase for one hour of work? What does this value represent, rate of change or initial value?
d. What is the equation that represents this function?
(2) The table shows number of people as a function of time in hours. Write an equation for the function and describe a situation that it could represent. Include the initial value, rate of change, and what each quantity represents in the situation.

Hours	Number of People
1	150
3	250
5	350

Interpreting a Linear Function continued

3. Amber plans to cook a turkey and macaroni and cheese for a special dinner. Since she will need to use the oven for both dishes, and they won't both fit in the oven at the same time, she has to determine how much time all the cooking will take. The macaroni and cheese will take a set amount of time, while the turkey takes a certain number of minutes per pound that the turkey weighs.

The equation models the total cooking time Amber will need to prepare her dishes.

$$
y=15 x+40
$$

a. What do variables x and y represent? Use the phrase is a function of to describe how the two quantities relate to each other.
b. What does the value 40 represent?
c. What does the rate of change represent?
d. What is the total cooking time for just the turkey if it weighs 12 pounds? How do you know?

Writing an Equation for a Linear Function from a Verbal Description

Write an equation for each linear function described. Show your work.

(1) The graph of the function passes through the point $(2,1)$, and y increases by 4 when x increases by 1 .
(2) the function with a rate of change of $\frac{3}{2}$ whose graph passes through the point (4, 10.5)
(3) the function with a rate of change of $\frac{4}{5}$ that has a value of 10 at $x=10$
4. the function that has an x-intercept of -2 and a y-intercept of $-\frac{2}{3}$
(5) Cameron stops to get gas soon after beginning a road trip. He checks his distance from home 2 hours after filling his gas tank and checks again 3 hours later. The first time he checked, he was 170 miles from home. The second time, he was 365 miles from home. What equation models Cameron's distance from home as a function of the time since getting gas?

6 A charity organization is holding a benefit event. It receives $\$ 28,000$ in donations and $\$ 225$ for each ticket sold for the event. What equation models the total amount earned from the event as a function of the number of tickets sold?

Writing an Equation for a Linear Function from a Verbal Description continued

(7) The same charity organization from problem 6 has to pay $\$ 4,700$ for the banquet hall as well as $\$ 110$ per plate for each ticket sold.
a. What equation models the total amount spent as a function of the number of tickets sold?
b. Using your answer from problem 6, write an equation for the charity's profit as a function of ticket sales. (profit $=$ amount earned - amount spent)

8 A school pays $\$ 1,825$ for 150 shirts. This includes the $\$ 25$ flat-rate shipping cost.
a. What equation models the total cost as a function of the number of T-shirts ordered?
b. What does each variable represent?
c. What are the initial value and rate of change of the function? What does each one represent?

Using Graphs to Describe Functions Qualitatively

Tell a story that could be represented by the graph shown.

(1) The graph represents steps taken as a function of time.

(2) The graph represents average pace as a function of time.

Using Graphs to Describe Functions Qualitatively continued

(3) The graph shows sales as a function of time.

(4) The graph shows distance as a function of time.

(5) For an interval on a graph that shows that a change is happening, explain how the shape of the graph on that interval tells you whether the change is happening gradually or quickly.

Finding the Slope of a Line

> Use the information provided to find the slope of each line. State what the slope represents.

(1) | Seconds | 0 | 5 | 10 |
| :--- | :---: | :---: | :---: |
| Feet | 0 | 30 | 60 |

\qquad
(3)

5

4

(6)

Finding the Slope of a Line
 continued

7

8

9

10

(11) Compare finding the slope using a table and using a graph.

Graphing a Linear Equation Given in Any Form

>Graph each linear equation on the grid provided. Be sure to label the units on the x - and y-axes.
(1) $5 x+2 y=10$

(3) $-\frac{1}{2} x-2 y=4$

(2) $200 x-300 y=600$

(4) $6 x-12 y+24=0$

Graphing a Linear Equation Given in Any Form continued
(5) $-150 x+5 y=300$

(7) $-6 x+7 y=42$

(6) $-4 x-40 y-80=0$

(8) $10 x+\frac{1}{3} y=30$

(9) Which method do you prefer for graphing linear equations that are not in the form $y=m x+b ?$

Representing and Solving Problems with One-Variable Equations

Write and solve an equation to answer each question.

(1) The perimeter of the triangle shown is 30 inches. What is the length of the longest side of the triangle?

2. Two times the quantity of seven less than one-fourth of a number is equal to four more than one-third of the number. What is the number?
(3) Amanda uses a rectangular canvas for a painting. The length is $6 x-3$ centimeters. The width is $2 x+6$ centimeters, and is $\frac{4}{5}$ of the length. What are the dimensions of the canvas?
4. Three friends fill bags with trash at a neighborhood cleanup. Randall's bag weighs $3 x-7$ pounds, Seth's bag weighs $2 x-10$ pounds, and Joanna's bag weighs $2 x+2$ pounds. Together, Randall's and Joanna's bags weigh 3 times as much as Seth's bag. How many pounds of trash does each friend pick up?

Representing and Solving Problems with One-Variable Equations continued

(5) Eli and Angela are saving money to buy their grandparents an anniversary gift.

Eli has saved $\$ 8$ more than $\frac{1}{3}$ of Angela's savings. If they each save $\$ 10$ more, Eli will have saved \$4 more than Angela's savings. How much has Eli saved?
(6) The perimeter of the larger rectangle is 2 meters greater than twice the perimeter of the smaller rectangle. What is the perimeter of the larger rectangle?

Solving Systems of Linear Equations by Substitution

Find the solution of each system of equations.
(1) $y=2 x-1$
(2) $x=y+4$
$y=3 x+2$

$$
2 x+2 y=16
$$

(3) $x+y=5$

$$
6 x+3 y=27
$$

(4) $5 x+2 y=10$

$$
2 x+y=2
$$

(5) $4 x-8 y=-26$
$9 x+4 y=13$
(6) $2 x-3 y=24$
$2 x+y=4$
(7) How do you decide which variable to substitute when solving a system of
equations by substitution? Explain.

Solving Systems of Linear Equations by Elimination

Find the solution to each system of equations.

(1) $\begin{aligned} 4 x-12 y & =-8 \\ -3 x+12 y & =12\end{aligned}$
\qquad
(3) $6 x+3 y=3$
$3 x-y=4$
\qquad
(5) $7 x+6 y=16$
$4 x-2 y=1$
4. $-3 x+2 y=-17$
$-6 x+3 y=-30$

$$
-6 x+3 y=-30
$$

(2) $6 x-9 y=18$
$-6 x+2 y=-4$
(6) $16 x+5 y=-2$

$$
4 x-y=-2
$$

(7) When using the elimination method to solve a system of equations, how do you choose which variable to eliminate?

Solving Real-World Problems with Systems of Linear Equations

Solve the problems by solving a system of equations.

(1) Otis paints the interior of a home for $\$ 45$ per hour plus $\$ 75$ for supplies. Shireen paints the interior of a home for $\$ 55$ per hour plus $\$ 30$ for supplies. The equations give the total cost for x hours of work for each painter. For how many hours of work are Otis's and Shireen's costs equal? What is the cost for this number of hours?

$$
\begin{aligned}
& y=45 x+75 \\
& y=55 x+30
\end{aligned}
$$

3 There are 47 people attending a play at an outdoor theater. There are 11 groups of people sitting in groups of 3 or 5 . How many groups of each size are there?
(2) Calvin has 13 coins, all of which are quarters or nickels. The coins are worth $\$ 2.45$. How many of each coin does Calvin have?

Agnes has 23 collectible stones, all of which are labradorite crystals or galena crystals. Labradorite crystals are worth \$20 each, while galena crystals are worth $\$ 13$ each. Agnes earns $\$ 439$ by selling her entire collection. How many stones of each type did she sell?

Solving Real-World Problems with Systems of Linear Equations continued

(5) A dog groomer buys 7 packages of treats. Gourmet treats are sold in packs of 2. Treats that help clean a dog's teeth are sold in packs of 5 . The dog groomer buys 26 treats in all. How many packages of each did she buy?

6 Copland competes in 27 swimming events this season. He wins either first place or second place in each event. Copland has 3 more first-place wins than second-place wins. In how many events did he win first place, and in how many did he win second place?
\qquad
\qquad
\qquad
(7) Choose one problem from problems 1-6. Check your answer by solving the system of equations in a different way.

Performing Sequences of Rigid Transformations

$>$ Perform the given sequence of transformations on each figure. Write the coordinates of the vertices of the final image. Then tell whether the final image is congruent to the original figure.
(1) Reflect across the x-axis.

Translate 5 units left.

(3) Translate 2 units right and 4 units down. Rotate 180° around the origin.

(2) Rotate 90° clockwise around the origin.

Reflect across the x-axis.

(4) Reflect across the x-axis. Rotate 90° counterclockwise around the origin.

Performing Sequences of Rigid Transformations continued

(5) Reflect across the y-axis.

Translate 5 units up.
Rotate 90° clockwise around the origin.

6 Translate 6 units right.
Rotate 180° around the origin. Reflect across the y-axis.

(7) How did you determine the label for each vertex when you transformed the triangles in problem 5?

Describing Sequences of Transformations Involving Dilations

$>$ For each pair of figures, describe a sequence of three or fewer transformations that can be used to map one figure onto the other.

(2)

(3)

(4)

Describing Sequences of Transformations Involving Dilations continued

(5)

(7) Give an example of a sequence of transformations that can be performed in any order and will result in the same image.

8 Give an example of a sequence of transformations for which changing the order results in a different final image.

